
Ue, equilibrium moisture content of material ,  kg/kg; ~, length of drying chamber, m; ]% concentration of dry 
substance in moist disperse material ,  kg/kg. 
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EFFICIENCY OF COOLING THERMOELECTRIC 

ELEMENTS OF ARBITRARY SHAPE 

V. A. S e m e n y u k  UDC 537.322 

The problem of the limiting efficiency of thermoelectr ic  cooling is considered in the general case 
when no limitations are imposed on the shape of the thermoelectr ic  elements and their  contact 
surfaces. 

It is well known that the permissible temperature  drop and the limiting power efficiency of thermoelectr ic 
elements of prismatic shape are  uniquely determined by the figure of mer i t  of the thermoelectr ic  materials  
and the temperature  level at which the elements operate and are independent of their  geometrical  dimensions 
[1]. It is of considerable interest  to clarify what this behavior is in the general case when no limitations are 
imposed on the shape of the thermoelectr ic  element and on its contact surfaces. 

Consider a thermoelectr ic  element (see Fig. 1) having two contact surfaces s o and s 1. We will assume 
that the heat exchange between the thermoelectr ic  element and the external sources only occurs over the sur-  
faces of the contacts, which are simultaneously isothermal and equipotential, while the remaining surface of 
the thermoelectr ic  element is adiabatically and electr ical ly insulated. We will consider the propert ies of the 
temperature  field which is established when a potential difference ul--u 0 is applied, and we will determine the 
heat flow entering the contact surfaces along the body of the thermoelectr ic  element. 

If we ignore the temperature  dependence of the physical parameters  of the thermoelectr ic  material ,  the 
temperature  field inside the region v bounded by the surface s of the thermoelectr ic  element corresponds to 
the Poisson equation 

F- 
V~-~ . . . .  (i) 

Equation (1) is uniform and there are also the nontmiform boundary conditions: 

0; "0[s,=T 1-To;  0~_~ = 0 .  (2) 
( / I t  y 
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T 0 ~ S  1 ' 

Fig. 1. I l lustrat ing the prob-  
lem of determining the flow 
of heat by conduction to the 
eontact  sur faces .  

The solution of this equation can be 
responding uniform equation for assigned 
ditions (which cor responds  to equality of the t empera tu re s  of the contacts  T 1 = To): 

r epresen ted  in the form of the sum of the solution ~' of the c o t -  
conditions (2), and the solution d" of Eq. (1) for zero  boundary con- 

(x, V, z ) =  t~' (x, y, z ) +  r V, z). (3) 

The functions d' (x, y, z) and d" (x, y, z) have a simple physical  meaning. The f i rs t  of them gives the 
distribution of the excess  t empera tu res  ~ = T--T 0 in the the rmoelec t r i c  element when there is no current ,  
when an assigned t empera tu re  difference T1--T 0 is maintained at the contacts,  while the second gives the dis- 
tribution of the excess  t empera tu res  in the same thermoelec t r i c  element when there  is a cur ren t  present ,  but 
for uniform contact  t empera tures .  

In accordance  with this, the heat t r ans f e r  vec tor  of the rmal  conduction at any point of a thermoelec t r ic  
element of a rb i t r a ry  shape is equal to the sum of the thermal  conduction vec tors  for the two above-mentioned 
special  cases  of t empera tu re  distribution: 

(4) qF : qF, -- qF:- 

The flux of the vector  qF through the contact surfaces  can be written in the form 

~S q e ' d s = Q ~ " ; , o , , = i i S  q&.ds+  .l'i'. q&.ds. (5) 
SO, l s0,1 S0,I 

Since the sur faces  of the contacts  are  i so thermal ,  the vectors  qF, qF 1, and qF 2 are directed along the 

normals  to the su r f aces ,  and, consequently,  the sca lar  products of the vectors  in Eq. (5) can be replaced by 
products  of their  absolute magnitudes. Assuming that the hea t - t r ans fe r  vector  is directed toward the side in 
which the t empera tu re  dec reases ,  while the vector  of the small  a rea  ds is directed toward the external nor-  
real, we can write 

So So sl sl st 
(6) 

Consider  the integrals  on the right side of Eq. (6). Since the flux qF 1 cor responds  to the case when there 
are  no internal  heat sources ,  we have the obvious equation 

!'S $5 (7) 
'5o $1 

For  the case  when there  is a flow of heat by the rmal  conduction qF~ in the body due to internal  sources  
of Joule heat dissipation of overal l  power Qj ,  we can write,  in accordance with Gaus s ' s  theorem, 

5~ q~''~ = 5~ qr'ds+ $5 q&ds=QY (8) 
$ $o s l  

Assuming that a cer ta in  fract ion • of the Joule heat flows to the contact  So, we have 

(97 
$o $1 

197 



Taking Eqs.  (7) and (9) into account,  Eqs. (6) take the f o r m  

QFI$~ = Qt:, -}- (PQI, Qrl$, = Q r , - - ( 1  --(p)Qj. (10) 

We will de t e rmine  the f rac t ion  ~ of the to t a l  power  of in terna l  heat  d iss ipat ion t r a n s f e r r e d  by t h e r m a l  
conduction to the su r f ace  s o when both contac ts  of the t h e r m o e l e c t r i c  e lement  a r e  mainta ined at the s ame  
t e m p e r a t u r e s  T O = T 1. Note that  the potent ia l  d is t r ibut ion in a noniso thermal  conductor  is  given by the 
gene ra l i zed  Ohm~ s law [3] 

Vu __. VP'* aV T _  I_~ j. (11) 
e G 

Putting the ope ra t o r  V2T" 
by --~., we obtain 

It  i s  seen  f r o m  Eq. (11) that  in a uni form i so t rop ic  medium,  the phys ica l  p a r a m e t e r s  of which a r e  in-  
dependent  of the t e m p e r a t u r e ,  the f ield of s t a t ionary  f lows is  a potent ial  field, i . e . ,  we can wri te  

i= - - - -~  V~. (12) 
e 

The potent ial  # = ~ *  + eu + e a t  cha rac t e r i z ing  this  field, because  of i t s  s t r u c t u r e  and physica l  meaning,  
can be ca l led  t he rmoe l ec t rochem i ca l .  

The potent ial  field # and the t e m p e r a t u r e  f ield T in the t h e r m o e l e c t r i c  e lement  a r e  c lose ly  connected to 
one another ,  and fo r  the Joule  heat  d is t r ibut ion this  re la t ion  is  of cons iderab le  impor tance .  Hence,  to solve 
the above p rob l em it  i s  impor tan t  to es tab l i sh  the p r o p e r t i e s  of the f ields and the i r  interact ion.  We will use 
for  this pu rpose  Green '  s f o rm u l a  for  the functions # and T":  

(Bv~T"-- T"v2~t)dv= ~t O---n- On 
U S S 

It  follows d i rec t ly  f r o m  Eq. (12) that  when ~ = eonst ,  V i = V2# = 0. In addition, s ince the ex te rna l  con-  
tac t  su r f ace s  of the t h e r m o e l e c t r i c  e l emen t s  a r e  adiabat ica l ly  and e lec t r i ca l ly  insulated,  eve rywhere  outside 
of the contacts  the in tegra l s  on the r ight  side of Eq. (13) vanish. Taking these  fac ts  into account, and also 
the condition T i = To, i t  is  easy  to conver t  Eq. (13) to the f o r m  

OT" ds -~. ~t o ds. (14) ~vZT" do = ~1 On On 
0 Sl $0 

equal to i ts  value - - i 2 / ~  on the left side of Eq. (14) and multiplying both sides 

1 II~ti'dv=p1~Sqp, dsq-gto~qFds (15) 

Sl So 

or, taking Eqs. (9) and (12) into account, 

~G S ~ t ( V ~ ) ~ d v = [ ~ l ( 1 - - , ) - ~ a o ~ ] Q  2 (16, 

The e l emen ta ry  volume (iv can be cons idered  as  pa r t  of a tube of cu r r en t  of infinitely smal l  c r o s s  s ec -  
t ion ds# contained between two infinitely c lose  su r f aces  of equal potential.  Denoting the left  side of Eq. (16) 

by j, we obtain 

V 

The la t te r  in tegra l  can be obtained by summin_g init iaUy the values  of the function under  the in tegra l  over  
the whole s u r f a c e #  = const  and then integrat ing f r o m #  0 t o ~ , :  

LLt 

P-o s~ H,o s p, IX* 

(18) 
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N o t e  that in view of the equation T 1 = T O in the case  considered ~ =~ 0", and, consequently, 

] = I (u I - -  uo) ~ -- .% = QI ~1 --~ ~to (19) 
2 2 

Equating the right sides of Eqs. (16) and (19), we obtain af ter  some simple algebra ~ - 1/2. Hence, when 
T o = Tl, i r respec t ive  of the shape of the the rmoelec t r i c  element and its contact surfaces ,  half of the total 
power of the internal  sources  of Joule heat are  applied to each of the contacts.  If the t empera tu res  of the con- 
tac ts  are  different,  then,  as follows f rom Eq. (10), the total heat flux to the points of contact is equal to the 
algebraic sum of the heat conduction flux when there  is no cur ren t  and half the power of the internal sources.  
This important  conclusion enables us to analyze the efficiency of a thermoelec t r ic  element as a source of cool-  
ing in the most  genera l  case. 

Consider  the thermal  balance of the the rmoe lec t r i c  contacts.  The the rmal  fluxes Q0 and Q1, which the 
the rmoelec t r i c  element exchanges with the external sources ,  are  given by the relat ions [2] 

Qo = Q.~is~ - -  Qe!so, Q1 -- Q~!s, --Qpls~ �9 (20) 

Substituting Eq. (10) into Eq. (20) and assuming ~ = 1/2, we obtain 

1 1 
Qo=Q~:s, -~ Q I - Q F ~ ,  QI=Q~s~ --~-Qj--Qt:~.  (21) 

Hence, the form of the equations of heat balance of the contacts  in the generaI  case  has the same form 
as for  the rmoelec t r i c  elements of the s implest  geomet r ica l  shape [1, 2]. 

Relations (21) can also be represented  in the form 

1 12 
Qo = aTol - -  "2 (~cp ~ d9 (T 1 - -  To), 

1 12 (22) 
Q1 = c~TII § 2 (~r ~9  ( T 1 -  To). 

The products ~@ and q@ occurring here are given by the obvious relations 

}.r -- Q~, , (~dp _ _ _ I  (23) 
T~ -- T O u 1 - -  u 0 

and have the physical  meaning of the thermal  and e lec t r ica l  conductivities of the thermoelec t r ic  element. 

The quantity �9 is ent irely determined by the shape of the the rmoelec t r i c  element and, in view of the 
proport ional i ty  of the the rmal  and e lec t r ica l  conductivit ies,  has the same numer ica l  values in relat ions (23). 
In par t icular ,  for  a p r i smat ic  thermoelec t r ic  element in which the t empera tu re  distribution (when there is no 
e lectr ic  current)  and the potential distribution obey a l inear law, the form factor  ~ is equal to the ratio of the 
c ro s s - s ec t i ona l  a rea  of the thermoelec t r ic  element to its length. 

Relations (22) have exactly the same form as the well-known equations for the thermal  fluxes at the 
contacts  of the usual p r i smat ic  thermoelec t r ic  element. Consequently, we can state that all the limitations on 
the permiss ib le  t empera tu re  drop and energy efficiency established previously for the pr i smat ic  thermoelec t r ic  
e lement  [1, 2], also hold for a the rmoelec t r i c  element of a rb i t r a ry  shape ff i ts contact sur faces  are  i so thermal  
and equipotential, while the remaining surface is thermal ly  and electr ical ly  insulated. In other words, i r -  
respect ive  of the shape of the the rmoe lec t r i c  element, its limiting efficiency is uniquely determined by the 
dimensionless  quantity zT, the figure of mer i t  of the mater ia l .  This conclusion holds for a uniform isotropic 
the rmoe lec t r i c  mater ia l ,  ass'uming that its physical  p a r a m e t e r s  are  independent of the temperature .  An 
attempt to es t imate  the effect of the shape of the the rmoelec t r i c  element on its energy efficiency in the more  
genera l  case  when the p roper t i es  of the semiconducting ma te r i a l s  are  given in the form of a rb i t r a ry  hmctions 
of the coordinates  and tempera tu re  has been made in [4]. However,  in that publication it was assumed that the 
e lec t r ic  field in a nonuniform thermoelec t r i c  element is a potential field (the vec tor  of the cur ren t  density is 
proport ional  to the gradient  of a cer ta in  sca la r  function having the meaning of potential). This assumption 
is not justified in reality. Phys ica l  and thermal  nonuniformities give r i se  in the the rmoe lec t r i c  element to 
extraneous emfs,  and the electr ic  field ceases  to be a potential field [5]. Hence, the conclusions stated in [4] 
that the maximum energy efficiency in the mos t  genera l  case is independent of the shape of the conductor must  
be regarded  as unproven. 
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N O T A T I O N  

s, to ta l  su r face  of the t h e r m o e l e c t r i c  e lement ;  So, sl,  su r f aces  of the cold and hot contacts ,  r espec t ive ly ;  
Z, t h e r m o e l e c t r i c  e l emen t  su r face  outside the contac ts ;  v, volume of the t h e r m o e l e c t r i c  e lement;  u, e lec t r i c  
potential ;  Uo, u i, potent ia ls  of the cold and hot contacts ;  i cu r r en t  densi ty  vec tor ;  ~, 7,, e l ec t r i ca l  conductivity 
and t h e r m a l  conductivi ty;  ~ ,  absolute  t h e r m a l  emf;  z = c ~ z a / h ;  T,  absolute  t e m p e r a t u r e ;  To, T1, t e m p e r a t u r e s  
of the cold and hot contac ts ;  T ' ,  t e m p e r a t u r e  at  an a r b i t r a r y  point on the t h e r m o e l e c t r i c  e l emen t  with no c u r -  
ren t  and at T O ~ T1; T" ,  t e m p e r a t u r e  at an a r b i t r a r y  point on the t h e r m o e l e c t r i c  e lement  with cu r r en t  T O = 
T1; ~ = T--To; ~' = T ' - -To ;  ~"  = T"--To;  V 2, Lap lace  ope ra to r ;  V, Hamil tonian ope ra to r ;  qF = --~VT, conduc- 
t ion h e a t - t r a n s f e r  vec to r ;  qF1 = - -~VT ' ;qF2  = - -~  VT";  QF1 , heat  conduction through contact  su r f aces  with 
no cur ren t ;  Q j ,  to ta l  power  of in te rna l  Jou le  heat  sou rces ;  ~, f rac t ion  of the total  power  of the in terna l  sou rces  
t r a n s f e r r e d  by heat  conduction to the su r face  s o at T O = T1; ~ =~*  + eu + e a T ;  ~*,  chemica l  potential;  e, 

c a r r i e r  cha rge  I= ~ i.ds., e l ec t r i c  cu r r en t ;  s# ,  equipotontial  su r face ;Q~ is o = ~ ToI, P e l t i e r  heat  absorbed  on 
s~ 

a c o l d  contact;  Q~ is 0 = ~T l I ,  P e l t i e r  heat  gene ra t ed  at a hot contact;  r  f o r m  fac tor ;  Q0, heat  r emoved  f rom 
cold source ;  Q1, heat  supplied to hot source .  
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G E N E R A L I Z E D  S T A T I C  

O F  T H E R M O R E S I S T O R S  

VOLT--AMPERE C H A R A C T E R I S T I C S  

I .  Z .  O k u n '  UDC 536.531 

S imi la r i ty  c r i t e r i a  a r e  obtained fo r  s ta t ic  v o l t - - a m p e r e  c h a r a c t e r i s t i c s  of t h e r m o r e s i s t o r s  and 
for  t h e r m o r e s i s t o r s  included in a c i rcui t .  A technique is  desc r ibed  for  a s impl i f ied g raph ic -  
analyt ical  des ign of a c i rcu i t  with a t h e r m o r e s i s t o r  and ru les  a re  given for  modeling t h e r m o -  
r e s i s t o r s  where  the d iss ipa t ion  coeff ic ient  va r i e s .  

1. S i m i l a r i t y  C r i t e r i a  f o r  S t a t i c  V o l t - - A m p e r e  

T h e r m o r e s i s t o r  C h a r a c t e r i s t i c s  

We begin with the asstunption that  the t e m p e r a t u r e  T is  constant  over  the ent i re  volume of the t h e r m o -  
r e s i s t o r ,  which is  approx imate ly  t rue  [1, 2] when 

Bi << 1 (1) 

(Bi is  the Biot number) .  

We can  wr i te  the hea t -ba lance  equation for  a t h e r m o r e s i s t o r ,  re la t ing the cu r r en t  i and the voltage u on 
it  with the envi ronment  t e m p e r a t u r e  T e and the d iss ipa t ion  coeff icient  H: 
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